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1. Introduction 

 In studying the technical change in the U.S., Solow (1957) differentiated the 

movements along the production function, which is caused by the input growth, from the 

shifts of the production function, which is defined as technical progress. With the 

assumption of constant returns to scale and perfect competition in the product market, the 

growth of output per unit of labor can be decomposed into technical progress and the 

weighted growth of capital per unit of labor. Technical progress has often been estimated 

by time series data of output and capital per unit of labor and the share of capital. Such a 

measure is referred to as “Solow residual.” For a multiple inputs production function, the 

total factor productivity (TFP) growth is widely used as a measure of productivity change. 

While the classical approach in the TFP analysis often assumes optimality in production 

capacity, the output-oriented stochastic frontier production approach (Aigner et al., 1977) 

argues that, with given sets of factor inputs and due to possible technical inefficiency, 

there can be deviation between actual and optimal output. The measure of technical 

inefficiency can thus be added to the analysis of TFP growth by using the stochastic 

frontier model.1 

 There are at least three different ways to measure TFP growth: the index-number 

approach, the production function approach, and the cost function approach (Cowing and 

Stevenson, 1981; Denny et al., 1981; Bauer, 1990). The index-number approach has been 

used mostly in the early studies. The production function approach is more convenient 

than the cost function approach since it does not require any cost information. In spite of 

different measurement approaches, the TFP growth is composed of technical progress, 

technical efficiency change, and a scale economies effect (Bauer, 1990; Kumbhakar and 

Lovell, 2000). Technical progress refers to an outward shift of the production frontier due 

probably to greater use of technology and innovation that yields a larger production 

capacity. Technical efficiency change refers to an overall movement from a position 

within the production frontier towards the production frontier. The scale economies effect 

contributes to the output and productivity growth due to increasing returns to scale. With 

                                                 
1 Both the data envelopment analysis (DEA) (Charnes et al., 1978) and the distance function approach (Fu, 
2005; Brummer et al., 2006) are the alternative measures of technical efficiency, but due to their 
non-parametric and deterministic nature, the stochastic frontier analysis tends to be the more popular 
approach.  
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increasing returns to scale in production, output increases at a higher percentage with 

respect to input increases and induces productivity improvement.2  

 This paper extends the production function approach in Solow’s (1957) classical 

model and follows Denny et al., (1981), Bauer (1990), and Kumbhakar and Lovell (2000) 

to examine the theoretical foundation of the decomposition of economic and productivity 

growth. We relax the assumption of constant returns to scale and consider technical 

inefficiency in a stochastic frontier model. The output growth is then decomposed into: 

input growth, adjusted scale effect, technical progress, and efficiency growth. 

Furthermore, TFP growth is decomposed into: adjusted scale effect, technical progress, 

and efficiency growth (Kunbhakar and Lovell, 2000). 

 The empirical study on the post-reform China economy is based on the stochastic 

frontier model with a translog production function (Christensen et al., 1971) that 

incorporates a human capital variable. Although the production stochastic frontier 

analysis has been used in other studies on the Chinese economy, most studies have 

focused on one or two components of productivity growth, while technical progress 

and/or returns to scale have been absent (Kalirajan et al., 1996; Carter and Estrin, 2001; 

Hu and McAller, 2005; Tong, 1999; Dong and Putterman, 1997; Wu, 1995, 2000). 

 Lacking a distinct method of constructing China’s physical and human capital 

stocks in recent studies (Bai et al., 2006; He et al., 2007; Funke and Yu, 2009; Perkins 

and Rawski, 2008; Qian and Smyth, 2006; Urel and Zebregs, 2009), this paper chooses to 

extend, revise and update the dataset and the methodology used in deriving the national 

and provincial physical capital and human capital stocks in Chow and Li (2002), Liu and 

Li (2006), Li (2003, 2009), and Li et al. (2009) and estimates the components of the 

economic and productivity growth for China’s thirty provinces for the sample period of 

1985-2006. China’s national and provincial capital are approximated from investment 

figures (Chow, 1993), while a perpetual inventory approach adjusted by provincial 

migration and mortality rates is used in construction the human capital stock (Wang and 

Yao, 2003; Barro and Lee, 2001; Howitt, 2005).  

 Section 2 discusses the theoretic foundation of the decomposition of economic 

                                                 
2 The empirical study of this decomposition of the TFP growth has earlier been applied to Korea with the 
production function approach by Kim and Han (2001) and with the cost function approach by Kwack and 
Sun (2005), and to the U.S. with the production function approach by Sharma et al. (2007). 
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and productivity growth, Section 3 elaborates on the data used for empirical estimation of 

the growth experience in post-reform China and introduces the empirical model. Section 

4 presents the empirical results, while section 5 concludes the study. 

 

 

2. Decomposing Growth and Productivity 

Although classical economic growth models assume technical efficiency and 

production always occurs on the production frontier, the occurrence of technical 

inefficiency in a production function can be shown by using a stochastic frontier model 

(Aigner et al., 1977; Battese and Coelli, 1988 and 1992; Greene, 2005), 

tu
ntttt etXXXFY  ),,,,( 21  ,          (1) 

where Y  is the actual level of output; F is the potential production function with n 

inputs; itX  is ith input; and u  is a half-normally distributed random variable with a 

positive mean. The inclusion of t in F allows for the production function to shift over 

time due to technical progress. The last term tue  measures technical inefficiency. 

Taking logarithm transformation yields 

tntttt utXXXFY  ),,,,(loglog 21  .         (2) 

Technical inefficiency occurs when 0tu  and the level of tYlog  is less than the level 

of Flog . Differentiating Equation (2) with respect to time yields the following output 

growth equation:  
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the elasticity to each input). It can be shown that te  is a measure of returns to scale. 

Suppose changes in all inputs have the same scale, itit aXX  . Consider the changes in 

output F  by taking the total derivative of ),,,,( 21 tXXXF n  and substituting 
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itit aXX   into F , we have 
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  is technical progress. The production shows increasing (constant, 

decreasing) returns to scale when 1te  (= 1, < 1).  

Define the technical efficiency (TE) as the ratio of the actual output and the 

potential output, tu
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The output growth can be represented as  

tt
i

ititt ETAXeY   .          (6) 

 Consider the following cost minimization problem under perfect competition in 

the factors markets, but not necessary in the product market.  


i

itittX XwC
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min  subject to tu
ntttt etXXXFY  ),,,,( 21  .     (7) 

We express the objective function and the constraint in the Lagrangian form. 
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i
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where   is the Lagrange multiplier. The first-order condition for minimization is  
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Multiplying both sides by itX ,  

 tititit YeXw  .          (11) 

Taking the sum of all inputs, the total cost is  
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itit YeXw  .          (12) 

Or,  

 ttt YeC  .           (13) 

Denote the cost share of input itX  as its . Dividing Equation (11) by Equation (13), the 

cost share is  
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This shows that the cost share is always equal to the relative output elasticity in the case 

of cost minimization.3 We can rewrite the output growth Equation (6) as 
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By adding and subtracting term,   
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Using Equation (14), 

 tt
i

itittit
i

itt ETAXseXsY    )1( .       (17) 

 Equation (16) shows the decomposition without cost information (w) and can be 

used for the empirical estimation of the sources of output growth, if the parameters of the 

production function are known. Equation (17) shows that output growth can be 

decomposed into four components: weighted sum of input growth, adjusted scale effect, 

technical progress, and growth of technical efficiency. For the first term in Equation (17), 

the weight for each input growth is equal to the cost share of each input. The second term 

represents the adjusted scale effect. When the returns to scale are constant, this term is 

zero. For the production with increasing returns to scale, 1te , a part of returns to scale 

( )1te  contributes to the output growth if aggregate input growth is positive. The 

contribution from returns to scale )1( te  is weighted by the aggregate input growth 


i

itit Xs  . If the aggregate input growth is zero, then the scale effect is zero. The first two 

                                                 
3 Kumbhakar and Lovell (2000) include the allocative inefficiency component in the decomposition. 
Equation (14) shows that the allocative inefficiency does not exist when the cost minimization is used. 
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terms in Equation (17) show that input growth has two impacts on output growth. One is 

the direct impact through its growth and the other is the indirect impact through scale 

effect.  

The decomposition in Equations (16) and (17) has relaxed a major assumption in 

Solow’s (1957) decomposition of economic growth, as Equation (17) does not require the 

constant returns to scale assumption. Indeed, the growth decomposition as shown by 

Equations (16) and (17) can be applied to any types of production function as long as 

output elasticity for each input can be derived. This implies that a nonlinear production 

function such as the translog function can be used for growth decomposition analysis.  

 Total factor productivity (TFP) can be defined as  

t

t
t

Y
TFP


 ,           (18) 

where   is the aggregate input. Taking logarithm and differentiation with respect to 

time, the TFP growth is  

 ttt YPFT   .          (19) 

Although it is not feasible to measure   since it is the aggregate of different inputs with 

different unit of measurements, a commonly used measure of input growth is the Divisia 

index (Jorgenson and Griliches, 1967).  
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Substituting Equations (17) and (20) into (19), the TFP growth is 

tt
i

itittt ETAXsePFT   )1( .        (21) 

Then, the TFP growth has three components: adjusted scale effect, technical progress, and 

growth of technical efficiency (Bauer, 1990; Kumbhakar and Lovell, 2000, pp. 284).4  

 

 

 

 

                                                 
4 When production is constant returns to scale, 1te , and without technical inefficiency, the 

decomposition is reduced to APFT    as in Solow (1957). 
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3. Post-reform China and Estimation Method 

 Despite the persistent high growth China experienced since economic reform in 

1978, the reliability and accuracy of China’s output data has been questioned in two 

separate debates. The debate on the inclusion of measurement factors (Young, 2000, 2003; 

Rawski and Xiao, 2001; Holz, 2004, 2006; Chow, 2006) concentrates on the estimation of 

the capital stock series, and that such detailed measures as the scrap rate and depreciation 

rate of the same capital equipment at different years are absent. Most studies ended up 

using adjusted China’s output data that eventually are based on different sources of China 

data (e.g. Hsueh and Li, 1999). By concluding that the estimation of China’s physical 

capital stock based on different assumptions does not vary much and the various capital 

stock series can be used as estimates to represent an acceptable scenario for empirical 

analysis, Holz (2006) must have realized that scrap rates and depreciation rates are 

assumed in empirical studies. Indeed, an OECD (2001) study argues that the more 

relevant contribution of a capital asset is the flow of capital services provided by the 

asset.  

 The other debate concerns the transformation from the Soviet material product 

system (MPS) to the system of national accounts (SNA) as the former does not value 

“non-market” and “non-materials” output and services and the deficiencies in China’s 

national account and statistical practices (Maddison and Wu, 2008; Wu, 2000, 2003). 

There has been contrasting debate on whether China’s national account has been 

over-estimated or under-estimated. The advocates based on the institutional effect argue 

that there are strong incentives for enterprises to oblige their supervising bureau by 

over-reporting output growth (Wu, 2000). In December 2004, China’s National Bureau of 

Statistics (NBS) reported that by incorporating non-agricultural activities, annual GDP 

estimates have been under-reported (Wu, 2007). China’s GDP has been revised upwards 

by US$300 billion in December 2005.5 

 Chow and Li (2002), Li (2003) and Chow (2006) argue that statistical deficiencies 

may cancel out each other if studies are based on time series rather than discrete analysis. 

It can be argued that while deficiencies in China’s statistical reporting are improving 

slowly, there are additional problems as rapid economic transformation is occurring. For 

                                                 
5 South China Morning Post, December 13 and 21, 2005, and January 13, 2006. 
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example, economic formalization would mean that output from previously informal 

activities would now be reported in formal economic statistics and output would have 

gone up. The pace of economic development itself could have influenced the accuracy of 

output reporting.  

 Recent empirical studies have examined various dimensions and sources of 

economic growth and productivity change in China using adjusted data (Lin, 2000; Wang 

and Yao, 2003; Fleisher et al., 2010; Woo, 2002, 2006; Bosworth and Collins, 2008; 

Zhang, 2003; Islam et al., 2006). In particular, studies have used physical capital 

constructed from investment data to examine growth and productivity. Chow and Li 

(2002) and Li (2003) constructed the national and provincial capital stock data using 

different investment sources to estimate productivity change in China, while Liu and Li 

(2006) and Li (2009) further extended the analysis on growth and productivity to 

incorporate the human capital variable and provincial performances. 

The data for China’s thirty provinces used in this paper comes mainly from the 

latest issue of the Statistical Yearbook of China, the Comprehensive Statistical Data and 

Materials in 50 Years of New China (1999), and the two Chinese censuses of 1990 and 

2000. The estimation on the production function requires an indicator for the physical 

capital stock approximated from investment figures (e.g. Young, 2003; Wu, 2000). We 

have followed the methodology and updated the capital stock used in Chow and Li 

(2002), Li (2003) and Liu and Li (2006) to 2006.  

Human capital is generally related to the level of education, though empirically, a 

number of indicators are used as proxy for human capital (Barro and Lee, 1993, 1996 and 

2001; Benhabib and Spiegel, 2005; Gemmell, 1996).6 Various assumptions and proxies 

have been used in constructing China’s human capital stock (Young 2003; Wang and Yao 

2003). Liu and Li (2006) and Li et al. (2009) have discussed China’s post-reform 

education performance and constructed China’s human capital stock using a perpetual 

inventory approach (Barro and Lee, 1993, 1996 and 2001). The initial human capital is 

derived from using the data in the two Population Censuses of 1990 and 2000. The 

annual graduates of the six schooling levels (Higher Education with 14.5 years, 

                                                 
6 These indicators include (1) total years of schooling derived from educational enrolment ratios; (2) 
international test scores; and (3) numbers of workers pass through primary, secondary and tertiary 
education.  
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Specialized Secondary, Vocational Secondary and Senior Secondary with 11 years, Junior 

Secondary with 8 years and Primary Education with 5 years) and the total numbers of 

persons that have attained various schooling levels within the age 15 - 64 years in 1990 

are used as the benchmark. Data on the annual graduates in each schooling level are 

adjusted by the mortality rate and inter-provincial migration figures.7  

 The empirical estimation involves the panel data estimation with thirty provinces 

in China for the sample period from 1985 to 2006. The output for the production function 

is the provincial real GDP (Y) and the inputs are labor (L) indicated by the number of 

employed workers, physical capital (K), and human capital (H). The estimation model is 

the production with a second-order transcendental logarithmic (translog) form.  

 22 )(ln)(lnlnlnlnln itLLitKKitHitLitKit LKHLKY    

   ititLHititKHititKLitHH HLHKLKH lnlnlnlnlnln)(ln 2   

 
2006

1986
Tt t Rr r it it

t r

DT DR v u 


    ,              (22) 

where the subscript i is the ith province and t is the time period; tDT  is the dummy 

variable for different years to capture technology change; DRr is the dummy variable for 

different regions that captures the region-specific effects; itH  is the human capital 

variable expressed in average schooling years.8 The parameter Tt  can be used to 

measure technical level over time. The technical progress or the rate of change in 

technical level is 1 TtTt  . The random error itv  is symmetric and normally distributed 

with ),0(~ 2
vit Nv   and itu  is a non-negative truncated normal random error with the 

probability distribution of  2, uN  , where μ is the mode of normal distribution. The 

non-negative property of the random error itu  is used to measure technical inefficiency 

as in Equation (5). Technical inefficiency can either be time variant ( itu ) or time invariant 

                                                 
7 The statistics on the number of graduates at Specialized Secondary and Vocational Secondary education 
levels are not available since 2004. The human capital data adjustment can be found in Li (2009).  
8 To control for the possible endogeneity of human capital, Liu and Li (2006) applied the two lags of 
human capital as instruments. Due to the complexity of the stochastic frontier model, this paper 
compromises the possible endogeneity of human capital, and focuses on output elasticity of the respective 
input variables and technical efficiency. If endogeneity is serious, the estimated coefficients will be biased 
and the conclusion from this paper may be conservative. 
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( iu ). In the case of time variant technical inefficiency, itu  can be expressed as a 

monotonic ‘decay’ function as (Battese and Coelli, 1992, 1997): 

itit uu  ,         (23) 

where )](exp[ Ttt   , and   is an unknown scalar parameter. The technical 

inefficiency itu  can either be increasing (if 0 ), decreasing (if 0 ) or remained 

constant (if 0 ). 

 From Equation (22), the output elasticity for physical capital, labor, and human 

capital for province i and time t, which are denoted as 
itKe , 

itLe , and 
itHe , respectively, 

can be derived as follows: 

itKHitKLitKKKK HLKe
it

lnlnln2   ,      (24) 

itLHitKLitLLLL HKLe
it

lnlnln2   ,      (25)  

itLHitKHitHHHH LKHe
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lnlnln2   .       (26)  

The returns to scale is measured as 
ititit HLKit eeee  . The cost shares of inputs are 
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 . Using Equations (17) and (21), the 

decomposition of output growth and the TFP growth is shown as follows: 

itTtititHitLitKit ETScaleHsLsKsY
ititit

   ,    (27) 

itTtitit ETScalePFT    ,       (28) 

where  itHitLitKitit HsLsKseScale
ititit

  )1(  is a measure of the adjusted scale effect. 

From Equations (5) and (23), the growth of technical efficiency is 

 ))(exp( TtuET iit   .          (29) 

 The maximum likelihood method is generally used to estimate the parameters in a 

stochastic frontier production (Battese and Coelli, 1988 and 1992; Kumbhakar and Lovell, 

2000; Kumbkakar, 1990). After estimating the parameters in Equation (22), Equations 

(24) – (26) are used for the calculation of output elasticities and the adjusted scale effect; 

the estimated coefficient for Tt  gives the estimates of the technical progress. An 

estimator for iu  can be obtained from ))/(( itiuE  , where ititit uv   and Equation 

(29) is then used to derive the estimate of the growth of technical efficiency. Equations 
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(27) and (28) give the decomposition of economic growth and the TFP growth. 

  

 

4. Empirical Results 

 Table 1 reports the maximum likelihood estimates of the stochastic frontier 

production for a panel of thirty provinces of China for the sample period of 1985-2006, 

giving a total of 644 observations.9 The dependent variable is log real GDP. Columns (1) 

and (2) show the results from the Cobb-Douglas production model, while columns (3) 

and (4) show the results from the translog specification of the production function. The 

difference between columns (1) and (2) and between columns (3) and (4) is the inclusion 

of regional dummy variables in columns (1) and (3).10  

 The last three rows in Table 1 show the three sets of model specification tests. The 

first set contains the likelihood ratio tests for the joint effects of quadratic and interaction 

terms in the translog specifications. The statistics shown in columns (3) and (4) are 

statistically significant. Therefore, the translog functional form is appropriate for the 

production function. The second set contains the likelihood test for the joint effect of time 

dummy variables. All statistics in this row show that the joint effect of time dummy 

variables is significant. The third set contains the likelihood ratio tests for the joint effects 

of regional dummy variables. The results in columns (2) and (4) show these tests are 

statistically significant. In sum, the translog specification function with regional dummy 

variables shown in column (4) represents a preferred model for further analysis.  

 Based on the model selection criterions AIC and BIC, the models in column (3) 

and column (4) are better than the other two models. The results in column (3) show that 

the estimated technical inefficiency parameter,  , is negative and statistically significant, 

                                                 
9 A total of sixteen data values are missing in estimation due to missing human capital data in several 
provinces and years. 
10  The four sub-regions in China are chosen to reflect the geographical strength and economic 
concentration. The South region comprises nine southern provinces, commonly known as the Pearl River 
Delta region of Fujian, Guangdong, Guangxi, Hainan, Jiangxi, Hunan, Sichuan (including Chongqing), 
Guizhou and Yunnan. The East region consists of twelve provinces, including mainly provinces in the 
Yellow River and Yangtze River Delta regions of Beijing, Tianjin, Hebei, Shanghai, Jiangsu, Zhejiang, 
Shandong, Anhui, Henan, Hubei, Shanxi and Gansu. The West region refers to the remote provinces of 
Mongolia, Tibet, Shaanxi, Qinghai, Ningxia, and Xinjiang. The remaining three provinces in the North East 
region are Jilin, Heilongjiang and Liaoning, which consist of the traditional state-owned heavy industries. 
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which indicates that the overall inefficiency is increasing over time. When the regional 

dummy variables are included, the results in column (4) show that the intercept for the 

South region is not significantly different from that of the East region; both Northeast and 

West regions have a lower and significant intercept. However, the estimate of technical 

inefficiency is negative, but insignificant. There is thus no strong statistical evidence to 

show that technical efficiency is declining over time once the regional dummy variables 

are included in estimation.  

 Based on the translog production function estimates shown in column (4) and 

Equations (24) – (29), we derive the following measures: the output elasticity with 

respect to factor inputs ( HLK eee ,, ), returns to scale ( e ), the adjusted scale effect, rate of 

technical progress ( Tt ), and growth of technical efficiency ( ET  ). These measures are 

then used to derive the components of output growth and total factor productivity growth 

( PFT  ). Because the translog specification is used, the performance of these measures 

varies depending on provinces and years.  

 Table 2 shows the averages of the output elasticities and cost shares for inputs of 

the provinces in different years. China’s output elasticity for physical capital input shows 

an increasing trend starting from 0.543 in 1985 with an average of 0.614 in the sample 

period. Labor has an output elasticity that ranges between 0.278 and 0.337 with a mild 

declining trend. Human capital has the lowest value of output elasticity that ranges 

between 0.145 and 0.240. The elasticity reaches the highest level in the last three years in 

the sample period. The large and steady increasing output elasticity for physical capital 

shows that physical capital is dominant in production and its dominance is increasing 

over time. By taking the sum of three output elasticities gives the values of returns to 

scale between 1.041 and 1.191. This gives slight evidence of increasing returns to scale 

( )1e  and an increasing trend. The cost shares of inputs in the last three columns show 

that the cost share for physical capital is the highest with 56 percent on average; the share 

for labor is 28 percent while the share for human capital is only 16 percent.  

 Table 3 shows the estimates of weighted input growth for the three inputs and 

adjusted scale effects. The growth of aggregate input, the column under  , has an 

average of 6.409 percent. Physical capital accounts for 88 percent (5.631% out of 6.409%) 
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of input growth while labor and human capital accounts for 7.32 percent and 4.5 percent, 

respectively. This implies that physical capital is the most important factor for input 

growth. The average physical capital growth in the sample period is 10 percent while the 

growth of labor and human capital are 1.67 percent and 1.87 percent, respectively (not 

shown in the table). Since the returns to scale shown in Table 2 are greater than one, this 

gives a positive scale effect )1( e . Table 3 shows an increasing trend of 1e . The last 

column shows an increasing trend of the adjusted scale effect. The increase in the returns 

to scale and the input growth explains the increasing trend in the adjusted scale effect 

from 0.321 percent to 1.575 percent, with an average of 0.597 percent.  

 The decomposition of output growth and the TFP growth is shown in Table 4. For 

the four sources of the output growth, columns (2) – (5) show that: the major contributor 

to the economic growth is input growth, while both the adjusted scale effect (Scale) and 

technical progress ( Tt ) are positive, but the contribution from technical efficiency is 

negative in all years. On average, the input growth accounts for 63 percent of output 

growth (6.409% out of 10.153%). Although the scale effect is positive and increases 

significantly over the sample period, its estimates are still about one-third to one-half of 

the estimates of technical progress for the last three years in our sample. The estimates of 

technical progress are all positive, except in 1989, and the estimates reached the highest 

level between 1992 and 1994 with values of 7.606, 5.970 and 5.114. The growths of 

technical efficiency are all negative in all years. However, the magnitude is small with an 

average of -0.095 percent. Based on the test statistic in Table 1, this negative impact 

should be statistical insignificant and negligible.  

 The estimates in Table 4 also show the impacts from Asian Financial Crisis in 

1997-1998. China output growth started to decline in 1998 and recovered to 

before-the-crisis level in 2002. This decline in output growth due to Asian Financial 

Crisis can also be seen by the decline in input growth and adjusted scale effect between 

1999 and 2001. Based on the estimates of the time dummy variables, it seems that the 

major reason for the decline of growth was caused by the sharp decline of technical 

progress from 3.201 percent in 1997 to 1.608 percent in 1998. However, the time dummy 

variable is a proxy for the technical progress. Any significant event affecting the time 

dummy variables also appears as technical change. Because of the significance of Asian 
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Financial Crisis in 1997-1998, the decline of the coefficient of time dummy variables 

should be considered as a result from a special event rather than fundamental technical 

changes. 

 In the decomposition of the TFP growth shown in columns (3) – (5), the overall 

mean of the TFP growth is 3.744 percent, which is close to other earlier studies 

(Borenstein and Ostry, 1996; Chow and Li, 2002; Li, 2003). The two major components 

are the scale effect (16%) and technical change (86%). The adjusted scale effect accounts 

for at least 20 percent of the TFP growth during the last three years in our sample period. 

The effect of the growth in technical inefficiency is small and negligible. These findings 

show that although factor accumulation may lead to the TFP growth through increasing 

returns to scale, the most important factor for China’s growth in TFP is technical 

progress.  

 

 

5. Conclusions 

 This paper examines and applies the theoretic foundation of the decomposition of 

economic and productivity growth to China’s post-reform economy. Our theoretic 

discussion follows that of Solow (1957), Denny et al. (1981), Bauer (1990), and 

Kumbhakar and Lovell (2000) and shows that cost information is not required in 

estimating the components of decomposition and the production function approach is 

sufficient for the empirical work. The economic growth is decomposed into input growth, 

adjusted scale effect, technical progress, and growth in technical efficiency. With this 

decomposition, the TFP growth simply contains the last three components. The growth of 

aggregate input is the weighted sum of each input growth and the weight is the cost share 

of each input. The adjusted scale effect depends on the size of returns to scale. This effect 

is zero for constant returns to scale, but is adjusted by the aggregate input growth for 

increasing and decreasing returns to scale. Technical progress in the decomposition 

represents the shift of the production function over time. The technical efficiency can be 

measured and derived from stochastic frontier model. 

 For our empirical work on the production function, we have derived the physical 

and human capital stocks data using the inventory method for the thirty provinces of 
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China for the period 1984-2006. The average number of schooling years is used as the 

proxy for the human capital stock, where the numbers of graduates, provincial 

immigration and mortality at various education levels are taken into account. We have 

updated and extended the TFP analysis in Chow and Li (2002), Li (2003) and Liu and Li 

(2006) with stochastic frontier analysis.  

We estimate the stochastic frontier translog production function using the 

maximum-likelihood estimation method. Our empirical results show that the three factor 

inputs (physical capital, labor and human capital) are important for output performance. 

Among the three inputs, physical capital is the most important factor in China's 

post-reform economic growth. This conclusion is consistent with earlier studies (Galor 

and Moav, 2003; Goldin and Katz, 1998, 1999 and 2001). The role of human capital will 

become significant in the more mature stage of economic development, and it is 

important for China to upgrade its human capital for sustainable economic development. 

When the three sources of the growth of TFP are considered, we found that the 

major contributor to the TFP growth is technology progress. The contribution from 

adjusted scale effect is increasing in our sample period. The empirical results do bring 

forward several policy implications on the sustainability of the post-reform China 

economy. It is necessary for China to promote investments that are more productive, 

especially those embodied with technology. Policies should be geared to improve 

technical efficiency and utilize resources effectively. While labor is plentiful, developed 

human capital is scarce in China. It will take a relatively long time for individuals to be 

educated and trained. Thus, continuous investment in education and training is necessary. 

Mobility of human capital can facilitate knowledge spillovers across different provinces 

in China, and encouraging international in-flows of talents might also be necessary. It will 

be interesting for future analysis, for example, to consider the efficiency level among 

industries in different regions in the post-reform China. 
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 Table 1 Maximum Likelihood Estimates of the Stochastic Frontier Production  
(1985-2006) 

 (1) (2) (3) (4) 
lnK 0.417 *** 

(0.002) 
0.468 *** 
(0.026) 

0.162  
(0.142) 

-0.181 * 
(0.104) 

lnL 0.446 *** 
(0.023) 

0.415 *** 
(0.025) 

1.401 *** 
(0.204) 

1.509 *** 
(0.183) 

LnH 0.194 *** 
(0.037) 

0.204 *** 
(0.037) 

0.508 ** 
(0.238) 

0.542 ** 
(0.246) 

lnK*lnK – 
– 

– 
– 

-0.003  
(0.011) 

0.025 ***  
(0.009) 

lnL*lnL – 
– 

– 
– 

0.097 *** 
(0.018) 

0.181 *** 
(0.031) 

lnH*lnH – 
– 

– 
– 

-0.219 *** 
(0.077) 

-0.326 *** 
(0.110) 

lnK*lnL – 
– 

– 
– 

-0.135 *** 
(0.034) 

-0.105 *** 
(0.022) 

lnK*lnH – 
– 

– 
– 

0.049  
(0.052) 

0.134 ** 
(0.057) 

lnL*lnH – 
– 

– 
– 

0.088 ** 
(0.044) 

0.157 ** 
(0.075) 

South region  – -0.096 
(0.064) 

– 0.054 
(0.066) 

Northeast region – 0.157 *** 
(0.048) 

– -0.130 *** 
(0.048) 

West region – 0.003 
(0.062) 

– -0.313 *** 
(0.050) 

  0.942 *** 
(0.123) 

0.879 *** 
(0.118) 

0.943 *** 
(0.250) 

-7.008  
(45.903) 

  -0.024 *** 
(0.002) 

-0.023 *** 
(0.002) 

-0.030 *** 
(0.005) 

-0.003 
(0.003) 

2
u  0.156 0.149 0.508 2.909 

2
v  0.004 0.004 0.004 0.004 

Log likelihood 767.33 776.49 800.46 806.41 
AIC -1476 -1488 -1530 -1536 
BIC -1347 -1346 -1374 -1367 
Log-Likelihood Ratio Tests ( 2 ):    

HLKjiji ,,,,0,   – – 61.46 *** 301.28 *** 

rallforRr ,0   – 16.99 *** – 38.51 *** 

tallforTt ,0  508.97 *** 358.42 *** 274.16 *** 165.03 *** 

Notes: The estimates of Tt  are not shown in the table. The numbers in parentheses 

are standard errors. The superscripts *, **, and *** indicate that the estimated coefficient 
is statistically significant at the 10%, 5% and 1% level, respectively. 
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Table 2 Output Elasticities and Cost Shares 
(1985-2006) 

Year Output Elasticity Cost Share 
 Ke  Le  He  e  Ks  Ls  Hs  

1985 0.543 0.331 0.172 1.045 0.519 0.317 0.164 
1986 0.548 0.337 0.169 1.054 0.520 0.319 0.160 
1987 0.557 0.327 0.149 1.033 0.539 0.317 0.144 
1988 0.563 0.331 0.146 1.041 0.541 0.319 0.140 
1989 0.569 0.333 0.145 1.047 0.543 0.318 0.139 
1990 0.571 0.304 0.161 1.036 0.551 0.294 0.155 
1991 0.575 0.310 0.159 1.044 0.551 0.297 0.152 
1992 0.581 0.310 0.159 1.051 0.553 0.295 0.152 
1993 0.587 0.308 0.167 1.063 0.552 0.290 0.157 
1994 0.594 0.303 0.176 1.073 0.553 0.283 0.164 
1995 0.600 0.299 0.183 1.082 0.555 0.276 0.169 
1996 0.608 0.297 0.183 1.087 0.559 0.273 0.168 
1997 0.614 0.293 0.186 1.093 0.562 0.268 0.170 
1998 0.624 0.319 0.172 1.115 0.560 0.286 0.155 
1999 0.638 0.301 0.156 1.094 0.583 0.275 0.142 
2000 0.646 0.297 0.150 1.093 0.591 0.272 0.138 
2001 0.651 0.290 0.157 1.099 0.593 0.264 0.143 
2002 0.654 0.288 0.172 1.114 0.587 0.259 0.154 
2003 0.658 0.285 0.184 1.128 0.584 0.253 0.164 
2004 0.661 0.282 0.205 1.148 0.576 0.246 0.178 
2005 0.665 0.278 0.222 1.165 0.571 0.239 0.190 
2006 0.668 0.284 0.240 1.191 0.561 0.238 0.201 
Mean 0.614 0.302 0.174 1.090 0.563 0.278 0.159 
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Table 3 Input Growth and Scale Effects  
(1986 – 2006) 

Year Input Growth Effect Scale Effect 
 KsK

  LsL
  HsH

    1e   )1(e  

1986 4.616 0.896 0.462 5.974 0.054 0.321 
1987 4.794 0.863 0.457 6.115 0.033 0.203 
1988 5.138 0.822 0.420 6.379 0.041 0.260 
1989 4.469 0.566 0.307 5.342 0.047 0.250 
1990 4.215 0.778 0.285 5.277 0.036 0.188 
1991 4.359 0.821 0.390 5.570 0.044 0.246 
1992 5.409 0.520 0.361 6.290 0.051 0.319 
1993 6.458 0.658 0.272 7.388 0.063 0.467 
1994 6.443 0.398 0.227 7.069 0.073 0.519 
1995 6.335 0.366 0.273 6.974 0.082 0.573 
1996 5.968 0.375 0.433 6.776 0.087 0.591 
1997 5.696 0.307 0.324 6.328 0.093 0.589 
1998 5.987 0.029 0.422 6.437 0.115 0.743 
1999 5.653 -1.033 0.524 5.144 0.094 0.485 
2000 5.394 0.092 0.379 5.865 0.093 0.546 
2001 5.469 0.102 0.132 5.704 0.099 0.563 
2002 5.581 0.548 0.034 6.163 0.114 0.705 
2003 6.059 0.490 0.115 6.664 0.128 0.854 
2004 6.606 0.609 -0.032 7.183 0.148 1.065 
2005 6.676 0.529 0.067 7.272 0.165 1.204 
2006 6.929 1.114 0.191 8.235 0.191 1.575 
Mean 5.631 0.469 0.288 6.409 0.090 0.597 

Notes:   is the growth of aggregate input, HsLsKs HLK
  . The average growth 

rates of physical capital, labor, and human capital over the sample period are 10%, 1.67%, 
and 1.87%, respectively.  
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Table 4 Decomposition of Output Growth and the TFP growth 
(1987-2006) 

 Y    Scale Tt  ET   PFT   
 (1) (2) (3) (4) (5) (3)+(4)+(5)

1987  9.337 6.115 0.203 3.112 -0.093 3.222 
1988 10.565 6.379 0.260 4.018 -0.092 4.185 
1989  4.238 5.342 0.250 -1.261 -0.092 -1.104 
1990  5.747 5.277 0.188 0.386 -0.104 0.470 
1991  7.348 5.570 0.246 1.636 -0.104 1.778 
1992 14.112 6.290 0.319 7.606 -0.104 7.822 
1993 13.721 7.388 0.467 5.970 -0.103 6.333 
1994 12.598 7.069 0.519 5.114 -0.103 5.530 
1995 11.233 6.974 0.573 3.788 -0.103 4.258 
1996 10.809 6.776 0.591 3.545 -0.103 4.033 
1997 10.016 6.328 0.589 3.201 -0.102 3.688 
1998  8.698 6.437 0.743 1.608 -0.090 2.261 
1999  7.447 5.144 0.485 1.908 -0.090 2.303 
2000  9.046 5.865 0.546 2.725 -0.089 3.182 
2001  9.293 5.704 0.563 3.115 -0.089 3.589 
2002 10.130 6.163 0.705 3.351 -0.089 3.967 
2003 11.345 6.664 0.854 3.915 -0.089 4.681 
2004 12.428 7.183 1.065 4.268 -0.088 5.245 
2005 12.124 7.272 1.204 3.736 -0.088 4.852 
2006 12.825 8.235 1.575 3.103 -0.088 4.591 

Average 10.153 6.409 0.597 3.242 -0.095 3.744 
 
 
 


